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A new method for natural frequency analysis of beam with an arbitrary number of cracks
is developed on the bases of the transfer matrix method and rotational spring model of
crack. The resulted frequency equation of a multiple cracked beam is general with respect to
the boundary conditions including the more realistic (elastic) end supports and can be
constructed analytically by using symbolic codes. The procedure proposed is advanced by
elimination of numerical computation of the high order determinant so that the computer
time for calculating natural frequencies in consequence is signi"cantly reduced. Numerical
computation has been carried out to investigate the e!ect of each crack, the number of
cracks and boundary conditions on the natural frequencies of a beam.
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1. INTRODUCTION

In the last two decades a lot of research e!ort has been devoted to developing an e!ective
approach for detecting crack in structures. Such an approach must be developed based on
the tools of the system identi"cation, that includes mainly a modelling of the structure
under consideration and its response measured in situ.

In the modelling of structures with cracks, it is necessary to underline the powerful "nite
element method (FEM) [1, 2]. This approach has no concurrence in application to large
structures, but for speci"cation of crack location in an element such as beam the analytical
model of the element is more useful. In the analytical model of beams, crack is treated as
a local change of sti!ness (or #exibility) at a section of crack location. To model crack in this
conception, Dimagoronas suggested the use of an equivalent rotational spring connecting
both the sides of a beam at the crack position. Then, in reference [3] the proposed crack
model has been validated by a general theory of cracked beams, that allows to calculate the
sti!ness of the equivalent spring as a function of crack depth. This model of crack is termed
as transverse crack model. Since 1978, Adams et al. [4] have investigated the case of crack
that was modelled by an axial spring (axial crack model), but sti!ness of the spring has not
been calculated. For application of a crack model to structural damage detection problem,
there is a need for a relation between the crack parameters and some characteristics of the
structure. This relation is often taken in the form of frequency equation of cracked beam.
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Using the transverse model Rizos et al. [5] have constructed the equation for cantilever
beam. Narkis [6] has given the equations for simply supported beam in both the cases of
transverse and axial crack models. Boltezar et al. [7] did the same task for free}free beams
with a transverse crack. Masoud et al. [8] considered the case of axially loaded "xed}"xed
cracked beam. Nandwana et al. [9] and Tsai and Wang [10] developed the theory for
stepped cantilevers and for Timoshenko beams. Furthermore, Liang [11] has shown that
there exists a general form of the frequency equation for both the cantilever and simply
supported beams. Morassi [12] has constructed a sensitivity equation of frequencies for
beams with elastic supports at the beam ends, but he investigated only the case of symmetry
of the supports. In reference [13], the frequency equation of cracked beam has been
established in a general form for all of the classical boundary conditions, that is likely the
equation given by Liang.

All the listed studies were concerned with the single crack; the dynamic behaviour of
a double-cracked beam and a rotor with two cracks were investigated by Ruotolo et al. [14]
and Sekhar [15]. A beam with an arbitrary number n of cracks was studied by Shifrin and
Ruotolo [16], who proposed a new method for evaluating natural frequencies of such
a beam, that requires to calculate determinant of (n#2) order instead of (4n#4)-matrix
determinant search as usually needed.

In this paper, a more simpli"ed method for evaluating the natural frequencies of beams
with n transverse cracks is investigated. This method is based on the use of rotational spring
model of crack and the transfer matrix method, that leads to determinant calculation of
a 4]4 matrix. It is possible to considerably reduce the computer time needed to evaluate
natural frequencies in comparison even with the method developed in reference [16], if the
number of cracks is more than two. Furthermore, the frequency equation established in this
paper is more general with respect to the boundary condition including the elastic one. The
obtained equation can be useful in theoretical investigation, for instance, in sensitivity
analysis of frequencies to crack, boundary conditions or to the structural constants and, of
course, it will be the main equation used for crack identi"cation.

2. VIBRATION MODEL OF BEAM WITH n CRACKS

Let us consider a beam of length ¸, cross-section area A"b]h, moment of inertia I
and Young's modulus E with n cracks at positions x
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Figure 1. Model of multiple cracked beam.
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where l is the Poisson coe$cient, h the beam height, a
j
the crack depth and the function

I
c
(z) has the form

I
c
(z)"0)6272z2!1)04533z3#4)5948z4!9)973z5#20)2948z6

!33)0351z7#47)1063z8!40)7556z9#19)6z10.

Free vibration of the beam is described by the equation
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with the condition at the crack position x
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Furthermore, the function u (x, u) must additionally satisfy boundary conditions, which can
be expressed in the form
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where B0
ij
, BL

ij
are functions of the so-called boundary parameters bN "(b
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m
)T. The

matrices in equation (3) further will be denoted by B
0

and B
L
, that have the same

dimensions 2]4.

3. THE TRANSFER MATRIX METHOD

For simplicity in writing, one introduces the following notations:
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3.1. TRANSFER MATRIX FOR BEAM ELEMENT

Equation (2) is considered now in a beam segment (x
j~1

, x
j
). Its general solution can be

represented as
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where x6 "x!x
j~1

. The constants C
j
, j"1, 2, 3, 4 may be determined by substituting

xN "0 or x"x
j~1

#0 into function (5) and using the state vector Z1 `
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as follows:
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Thus, substituting coe$cients (6) again into function (5) yields
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Using function (7), the relationships between the state vector Z1 ~
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at the right end of the
segment and the state vector at the left end Z1 `

j~1
can be also obtained in the form
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with j"1, 2,2, n#1 and matrix T
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is the transfer matrix of the beam segment.

3.2. TRANSFER MATRIX FOR JOINT (CRACK)

Conditions (3), in use of the notation for the state vectors Z1 ~
j

, Z1 `
j

, can be rewritten as
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where j"1, 2,2, n. The matrix J
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is called here the joint transfer matrix for crack.
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3.3. TRANSFER MATRIX FOR BEAM WITH n INTERNAL JOINTS (CRACKS)

From equations (8), and (9) one obtains Z1 `
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is the transfer matrix for the beam with n internal cracks. It is a matrix function of the
frequency u, crack positions x6

c
"(x
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)T and the so-called crack magnitude
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4. FREQUENCY EQUATION FOR BEAM WITH n CRACKS

Using the notation introduced above for the state vectors Z1
j
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, the boundary
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Q
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are elements of the transfer matrix Q . For the existence of non-zero solution of system
(14), determinant of the matrix A must be made to vanish. Since the matrix A is a function of

the frequency u represented through the so-called frequency parameter j"4Ju2oA/EI,
the crack characteristics x6

c
, a6

c
and the boundary parameters b1 "(b
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equation with respect to the frequency parameter j takes the form

f (j, x6
c
, a6

c
, b1 )"detA"0. (15)

Thus, natural frequency analysis of a beam with an arbitrary number n of internal cracks
leads to solving equation (15) with respect to j for given parameters x6

c
, a6

c
, b1 . In order to

construct the function f (j, x6
c
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c
, b1 ), one has to calculate, "rst, the transfer 4]4 matrix Q ,

then, determinant of the matrix A , which has also dimensions 4]4. These tasks might be
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done with any symbolic code, for example, the MAPLE. Thus, the function f (j, x6
c
, a6

c
, b1 )

can be determined analytically. In comparison with the procedure proposed in reference
[16], which requires to search determinant of an (n#2) dimension matrix, here one has to
compute only a 4]4 matrix determinant. This fact demonstrates the advantage and
e!ectiveness of the method proposed herein. In most cases of boundary conditions the
determinant can be obtained easily by hand. In fact, for the classical boundary condition
such as simple supports, "xed ends or cantilever beam the frequency equations (15) are,
respectively, the following:
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In the more general case of the elastic end supports, the frequency equation (15) takes the
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of the rotational and transverse springs at the left and right ends of the beam respectively.
Equation (19) is general for a lot of boundary conditions and covers, for instance, equations
(16)}(18) as particular cases.

5. NUMERICAL RESULTS AND DISCUSSION

To illustrate the present method of analysis, numerical results given below are obtained
for the beam considered in reference [16], that has the following properties: ¸"0)8 m,
b"0)02 m, h"0)02 m, E"2)1]1011 N/m2 and o"7800 kg/m3.

5.1. COMPARISON WITH PREVIOUS RESULTS

In reference [16], the authors have presented a comparison of their result with the one
given in reference [14] for the case of double-cracked cantilever (Figures 2}4 in reference [16]).



Figure 2. Comparison with the previous results: e!ect of second crack on the "rst three natural frequencies of
cantilever beam for various crack depths (1}10%; 2}20%; 3}30%). ------, reference [16]; s, reference [14].
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In use of the method developed in the present paper for the same beam, numerical
computation has been carried out and results were compared also with those given in
reference [16]. Graphics in Figure 2, where continuous lines correspond to results of this
work, show quite close results to those obtained in references [14, 16].

5.2. EFFECT OF CRACK POSITION AND DEPTH

Figure 3 gives ratios of the "rst three natural frequencies for the beam with single crack to
the corresponding frequencies of the uncracked beam in three cases of boundary condition
simply supported, "xed ends and cantilever beam respectively. These ratios shown by
graphics in the "gure are obtained as functions of the crack position for given crack depths
0)002, 0)004 and 0)006 m. Figure 4 shows the frequency ratios versus position of the fourth
crack with the given three cracks at 0)04, 0)08 and 0)12 m of the same depth 6 mm (30% of
the height) and under di!erent boundary conditions. A fact that might be derived from
graphics given in the "gures is that there exist certain positions in the beam, at which cracks
do not a!ect certain natural frequencies. Such positions are called here critical points for
a given frequency. For each frequency the corresponding critical points are di!erent and
they have been listed in Table 1. The critical points do not depend upon the number of
cracks that occurred in the beam and their existence is useful to detect crack position if
unchange of a certain frequency is recognized.

5.3. EFFECT OF NUMBER OF CRACKS

The frequencies ratios versus the number of cracks in the cases of classical boundary
condition have been computed and shown in Figures 5 and 6. The di!erent lines numbered
Figure 3. E!ect of single crack on the "rst three natural frequencies of a beam for di!erent boundary conditions
and for various crack depths (1}10%; 2}20%; 3}30%).



Figure 4. E!ect of the fourth crack on the "rst three natural frequencies of a beam for di!erent boundary
conditions and for various crack depths (1}10%; 2}20%; 3}30%).

TABLE 1

¹he critical points for the ,rst three natural frequencies in the cases of classical boundary
condition

Boundary condition type First frequency Second frequency Third frequency

Simpy supported ends * (1) 0)40000 (1) 0)26672
(2) 0)53328

Fixed ends (1) 0)17928 (1) 0)10608 (1) 0)07632
(2) 0)62072 (2) 0)40000 (2) 0)28544

(3) 0)69392 (3) 0)51456
(4) 0)72368

Cantilever * (1) 0)17312 (1) 0)10608
(2) 0)39688
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from 1 to 6 in the "gures correspond to the crack depths of 5, 10, 15, 20, 25 and 30%. Of
course, behaviour of the frequencies ratios strongly depends also on the distribution of the
cracks in the beam. Figure 5 shows the result in the case when cracks are distributed inside
the left quarter of the beam and Figure 6 shows the one for the cracks distributed all along
the beam. It is clear that increase of the number of cracks, in general, reduces the
frequencies.



Figure 5. E!ect of the number of cracks on the natural frequencies for di!erent boundary conditions and for
various crack depths (1}5%; 2}10%; 3}15%; 4}20%; 5}25%; 6}30%).

Figure 6. E!ect of the number of cracks on the natural frequencies for di!erent boundary conditions and
various crack depths (1}5%; 2}10%; 3}15%; 4}20%; 5}25%; 6}30%).
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Figure 7. E!ect of the boundary parameter a
0

on the "rst three natural frequencies for various numbers of
cracks (from 0 to 9).
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5.4. EFFECT OF ELASTIC BOUNDARY CONDITION

E!ect of elastic boundary condition in three particular cases upon the natural frequencies
of the cracked beam is considered by using equation (19). In the "rst case, only rotational



Figure 8. E!ect of the boundary parameter b
0

on the "rst three natural frequencies for various numbers of
cracks (from 0 to 9).
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constraint at the left end is investigated. In this case 0pa
0
pR, b

0
, a

L
, b

L
equal 0. In the

second one, 0pb
0
pR, a

0
, a

L
, b

L
equal 0, i.e., only e!ect of transverse spring at the left end

is studied. In the last case considered herein, b
0
, b

L
equal 0 and a

0
"a

L
"a. In all these

cases, the frequency ratios u
j
/u

0j
, j"1, 2, 3 (where u

0j
are natural frequencies computed



Figure 9. E!ect of the boundary parameter a
0
, a

L
on the "rst three natural frequencies for various numbers of

cracks (from 0 to 9).
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for zero values of the boundary parameters) versus a or b for various numbers of cracks
(from 0 to 9) have been computed and shown in Figures 7, 8 and 9 respectively. Figure
7 shows the frequency ratio versus parameter a

0
, which is the relative #exibility of the

rotational spring at the left beam end and Figure 9 shows change of the one in case of
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simultaneous variation of both a
0

and a
L

(the rotational spring parameter at the right
bound of the beam). From the "gures it may be noted that e!ect of the boundary parameters
in rotation constraint is signi"cant only in the range from 10~6 to 10~2 of the parameters.
Outside of the interval the number of cracks is more e!ective on the frequency change.
E!ect of the transverse constraint described by the parameter b at the ends of the beam on
the natural frequencies is shown in Figure 8. In this case, the signi"cant change range of the
frequency ratios is from 10~8 to 10~4. Moreover, increase in the boundary parameter b may
reduce the "rst frequency to zero and for values of the parameter b

0
beginning from 10~7

the number of cracks does not a!ect the natural frequencies.

6. CONCLUSIONS

The transfer matrix method has been developed for natural frequency analysis of
a multiple cracked beam based on the rotational spring model of crack. Using this method
the frequency equation for a beam with an arbitrary number of cracks was obtained by
determinant calculation of only 4]4 dimension matrix and for a more general (elastic)
boundary condition. This considerably reduces computer time for evaluating the natural
frequencies and hence is an advantage of the method developed in this paper. The obtained
frequency equation has been used to investigate the e!ect of crack position and depth,
number of cracks and elastic end constraints on the natural frequencies of a beam. One of
the results obtained is that independent of the number of cracks there exists a set of
positions in beam at which the presence of crack does not a!ect certain natural frequencies
of the beam. These positions for a given frequency are called the critical points.
Furthermore, the numerical computation shows also that increase in the number of cracks,
in general, reduces all natural frequencies for any boundary condition at the ends of beam.
Finally, the natural frequencies are sensitive to the elastic boundary conditions only for
spring constants ranged in some limited interval. Outside the interval the number of cracks
has a more signi"cant e!ect on the natural frequencies.
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